OutsyStemS TECH TALKS

IN-DEPTH SERIES

Tech Debt

How to Diagnose and Manage Technical Debt

Joao Melo

TECH TALKS

IN-DEPTH SERIES

outsystems

TECH DEBT

THIS

WAy WE ARE PROGRESSING

S0 FAST TOGETHER

MONKEYUSER .CoM

What it is...

-_—
.

What you'll
learn here

2. Impactin Businesses

3. Root Causes

4. Model to Master Tech Debt
5. Q&A

°outsystems TECH TALKS
IN-DEPTH SERIES

Audience

Tech Leads

Developers

Architects

Engagement Managers
Product Owners / Managers

Project Managers

°outsystems TECH TALKS

IN-DEPTH SERIES N

Simply put

outsystems

Technical Debt

Is the coding you have to do now
Because of the shortcuts you
took yesterday

OF
TECHNICAL DEBT

outsystems TECH TALIKS

EEEEEEEEEEEEE

Tech Debt is...

Carnegie Mellon University:
“the tradeoff between the short-term benefit of rapid delivery

and long-term value.”

Gartner:
“the deviation of an application from any nonfunctional

requirements.”

outsystems TECH TALKS

But, am | dealing with Tech Debt?

Changes that follow the remediation of Tech Debts are
not supposed to affect the behaviour of the App, from

a functional perspective

Tech Debt is NOT...

A mess!

A mess is not a technical debt.
A mess is just a mess.

“Messy code, produced by people who
are ignorant of good design practices,
shouldn't be a debt”

Uncle Bob
Best-selling author on software design principles
Co-author of the Agile Manifesto

TECH TALKS 9

IN-DEPTH SERIES

outsystems

Lehman's laws of software evolution

Continuing Change

Continually adapt or it becomes progressively less satisfactory (1974)

Increasing Complexity

Complexity increases unless work is done to maintain or reduce it (1974)

Continuing Growth

Functional content must continually increase to maintain user satisfaction (7991)

Declining Quality

Quality will appear to be declining unless it is rigorously maintained and adapted (7996)

Manny Lehman

Father of Software Evolution

10

Increasing

Complexity

Continuing

Change
Declining

Quality

User

Satisfaction

Continuing

Growth

11

Impact in Businesses

ADDRESSING
TECHNICAL DEBT

ALL
ORGANIZATIONS | ENTERPRISE | COMMERCIAL “

INNOVATING AND

oz 4% 28% 27%
38% 29% 36% 39%
30% 36% 33%

BUILDING NEW 33%
CAPABILITIES

Root Causes

Ranking Sources of Technical Debt
0 50

100

150 200 250 300

Bad Architecture Choices

Overly Complex Code

Lack of Code Documentation

Inadequate Testing

Obsolete Technology

Insufficient Test Automation

Inter-module Dependencies

Code Duplication or Repetitive Edits
Dependencies on Extemal Team's Code

Poor Deployment Process

Dependencies on Extemal Software Packages
Obsolete Code

Inefficient Configuration Management/Build Infrastructure
Other

. First Choice [l Second Choice Third Choice

Too many development languages and frameworks

350 Turnover in our development team

Known defects accepted in order to meet release
deadlines

Challenges in serving new markets or segments

Incorrect architectural decisions

Governance/regulatory defects due to new
regulations

Difficulty in i lving ¢

expectations

Limited development staff capabilities to leverage
new technologies

Unexpected defects or mistakes that became evident
after release

Security defects due to evolving threats

Neil Ernst in 2015, at Carnegie Mellon University, A Field Study of Technical Debt

0%

20% 40%

M CRITICAL PROBLEM i BIG PROBLEM

60%

Financial Debt -> Technical Debt

A Metaphor s B

“We accumulate the learnings about the application over time by
modifying the program to look as if we had known what we were

doing all along.” - ward cunningham

“I am never in the favor of writing code poorly, but I am in favor
of writing code to reflect your current understanding of a

problem. " Ward Cunningham

“A particular benefit of the debt metaphor is that it's very handy

for communicating to non-technical people.” - Martin Fowler

Ward Cunningham

First wiki
Co-author of the Agile Manifesto

14

The cost of avoidance

Like monetary debt, technical debt can

accumulate “interest”.

The longer technical debt is ignored or
unaddressed, the more software entropy can

occur.

°outsystems TECH TALKS

IN-DEPTH SERIES —_—

15

A model to Master
Tech Debt

#1: Don't let it build up

TECH TALKS

IN-DEPTH SERIES

@ outsystems

17

#1: Don't let it build up

#2: Make informed decisions driven by value to the business

TECH TALKS

IN-DEPTH SERIES

@ outsystems

18

#1: Don't let it build up
#2: Make informed decisions driven by value to the business

#3: Bring the client / owner to the party

TECH TALKS

IN-DEPTH SERIES

@ outsystems

19

Preventing

ems =3 b R

21

Leverage good practices

22

It's Ok to replicate (some) data and need to search

f—— ain OutSystems? _©_° °

c-uknéig esiay * 8 (] I n@ :

Jresults?search query=software+ ering +good+prac @ 4 2 P
U < C' @ youtubecom/resultssearch query=software-+engineering+good+practices * .] 44 Udemy Cotegories [Q. software design Udemy for Business Teachon Udemy P m ®
se v

= EYouTube software engineering good practices a & m i

f BEST 5 Software Engineering Best Practices You Should Follow H [10'000 results for “software des'9n

Lok Eaaeaig lmapihaiens Explore Software Design courses
B us o PRACTICES € ciémentwinaitescu @ ll d Ca Ch e S umma ry Students also learn Software Practices, Software Architecture, SAP MM, SOLID Principles, Design Pattern, Software Development

-~ /
Explore = | Here are 5 software development best practices that every software engineer should follow, covering code

. \ reviews, @ Not sure? All courses have a 30-day money-back guarantee

s)
' y N \ A ary fields M [i ~ 10000 rests

Software Engineering "Best Practices"

]
Util o

S7Kews 1 yearago frequently? SOLID Principles: nroducing Software Arcitecture & AS27.99
Topic A Design 5655
No 0 st 173 :

mysaffronapp.com/) Graphic Design (421)

Bestseller

Software Architecture (SOLID) & Design Patterns in A$17.99
Java 53999
Aguide to Create Smart, Reusable Softwares with SOLID

YT::-ur Brain on Design Patterns
Head First
Design Patterns

= Lears why everything .
A:.\ﬂ Lm‘u " Jyour friends know about Pactery
etbarraas ng patternia
coupling mistakes prebadly wreng

2

[tacover the secrets
of the Patterns Guru

ch Sync

Software engineering practices to improve management | Nicky
Soft_ware_ Thompson | #LeadDevBerlin

engineering 3.6K views + 1 year ago

practices to improve ® e

management

Level ~

O Al Levels

Fulltalk title: Using software engineering practices to improve engineering management Video sponsor

O seginner (10

O Intermediate

Lead Dev

O Expert (739)

Language

Price

Your Code as a
Crime Scene

. 7 Use Forensic Techniques Z - y
Martin Fowler : to Arrest Defects, Bottlenecks,and "ated by Titus Winters,
ol b / Bad Design in Your Programs hreck & Hyrum Wright 1240 your brain

Kent Be Nith Patterns, Debuggin, 1
Kent Beck 4 ; (int 3 = ©; 3 € loci Jo¢) resCi) = bufls): hi! L“:,fx(s COUgEINg . ‘
urn res; - S 2
X : wli®w., (m O™ More than one source

€ ree) ¢
 res,le, 1587 ¢ for the same concept?
mw“‘ ‘
love life in d
‘when ke cut o
hiis tnberitance

Lead the pattarns
that matte steaight

= checkRe 13},

Michael Yeathers Yes

J/

Tansparency service

Challenge assumptions

But help find the balance

24

Avoid over engineered features

The more code the more Tech Debt

25

Bulletproof NFRs

Everchanging integrations tend to demand
refactoring in several layers

26

|dentifying

ems =3 b R

27

Code Smell

CODE SMELLS ARE
SYMPTOMS OF POOR
DESIGN OR
IMPLEMENTATION CHOISES

[Martin Fowler]

Code smells in OutSystems

Accountinformation Value Easy tO Spot: In'Depth:
('(“"Number" ":"+GetAccountById.List.Current.Ac t.Number H : H B
‘+“,""8a1ance"":"+GetAccountById.List.Current ount.Balance+"}" o HardCOdlng o V|O|at|0n tO domaln rUIeS
} e Monolithic logic e Inconsistent data modeling
e Duplicated code e Change frequency
e o O (e T e Cyclic references e Cyclomatic complexity
rn #23: 36 duplicates = e Incorrect dependencies
< o e C(lient x Server logic mixed up
b e Undocumented components
<o :
-0
stk -9
- :
OlcisdCode | -0 ®

°outsystems TECH TALKS 29

IN-DEPTH SERIES

OutSystems Discovery

DISCOVERY

DiscoverySandbox (o JIRACONNOCION (omd) SandBoxARA (emi)
m O 0 0% e 0¥
8] 2 3 -

andBOXARS {om) SandboxesCCH teml)

Trusted Advwes Dsshboaray/ e Treated Advisor Reporta.

Trusted Advisor
SandBaxSMO (emt) TrAd_Dashboards (o TIAD_Reports jam) TrustedAdvisor jem)

“m oM | 0% 0 20m 0¥ om 0N 0

Trustes Adwor G | truses advisn
o180 frml) TrustedAdvisorinstalla (sl TrustedAdvISOrOPer ations (umi)
ox o nm o 0 D nm oM o 0
-2 - -1 - -1
Tnssted Adviscs Tester T2 | Trussed Adviacs LifeTume Probe
TrustedAdvisor Tester (em) TrustedProbe fet)
9. o o0 o 0
= |

Producers of "TrBrk_APl.oml|"

5 elen®nts consumed from "TrAd_BaseTypes.oml"
@ InstructionType_GetLabel @ MessageType_Getid Jij instructionType
W MessageType [l QueueStatus

°outsystems TECH TALKS

IN-DEPTH SERIES

30

W

N
=
=
N
=
=
e
_—
-
—

BN \\\.\\‘_.‘. N

EONNER
AN ~“\\

Qoutsystems TECH TALKS

IN-DEPTH SERIES

31

@ _ o
l e

i e . Language = “NL?

/ B «\"// ‘

A

e Tue ‘ 1 (Month =1) — ‘Z(Monthnm il
// ﬁ"‘/{w‘w-w’?/ .;‘/ \\\Ta\ =1y hngum:“'?
T omame S /j Kg “u,% g ﬁ,
P 74 ‘e

='N|.-mw, wer N

32

Coding
Style

Start ErrorLogCountd

v
Assign

ListClear
Assign ListAppend
ListAppend2
rLogCount1
Assign
e‘\’LagCoumz
ListAppend3 ‘
ErrorLogCount3
Assign /
ErrorLogCountd
ListAppend4
Assign
ErrorLogCount5
Lismppen%' .
ErrorLogCount6
Assign ‘
ErrorLogCount?
ListApper
Assign
ErrorLogCounts
l Assig!
ListAppend7 e \‘
9 Assign
ListApper

GeneralLogCount2
GetMaxDateForlog2
ListAppend
Assign
v
ListAppend13
GetMaxDateForLog!
GeneralLogCount3
GeneralLogCount1
GetMaxDateForLog3
ListAppend11 ‘
Assign
Assign
ListAppend14
GetMaxDateForLog0
GeneralLogCount
GeneralLogCount0
GetMaxDateForlog4
ListAppend10
4 Assig
Assign
ListAppend15
ErrorLogCountd

ListA}pend? .
-

GeneralLogCounts

ListAppend16

GeneralLogCount6
GetMaxDateForLog6
Assign

ListAppend17

GeneralLogCount7

GetMaxDateForLog7

End

o
\sﬂ\ppendzo

Assign

GetMaxDateForlogd

GeneralLogCountd
ListAppend19
Assign

GetMaxDateForLog?

GeneralLogCount?

Assign ListAppend18

T8

33

Code Reviews

Outer vision
Mentoring
Consensus

Shared ownership

°outsystems TECH TALKS

IN-DEPTH SERIES

eng-practices

Google's Engineering Practices documentation

Code Review Developer Guide

A code review is a process where someone other than the author(s) of a piece of code examines
that code.

What Do Code Reviewers Look For?

Code reviews should look at:

Design: Is the code well-designed and appropriate for your system?

Functionality: Does the code behave as the author likely intended? Is the way the code
behaves good for its users?

Complexity: Could the code be made simpler? Would another developer be able to easily

understand and use this code when they come across it in the future?

Tests: Does the code have correct and well-designed automated tests?

Naming: Did the developer choose clear names for variables, classes, methods, etc.?

Comments: Are the comments clear and useful?

Style: Does the code follow our style guides?

Documentation: Did the developer also update relevant documentation?

https://google.github.io/eng-practices/review/reviewer/

34

OutSystems Architecture Dashboard

© outsystems - Architecture Dashboard

Q

f— A)
= = e
Team Rt]| it
All - v
e p——

P T T e pe——

oo et N T P,) T ST ST

) B == Sl Sl el S el el el B T

T] Neds) foss T ST] RS DA S) ST

| o W] b S| Vot || S| bt i | i —— S

IBALLY

Last 2 weeks

IN-DEPTH SERIES

°outsystems TECH TALKS https://success.outsystems.com/Documentation/11/Managing_the_Applications_Lifecycle/Manage_technical_debt/Code_Analysis_Patterns 3 5

Managing

outsystems TECH TALKS

36

Bring the client to the party

Help them visualize it

37

Communication

Talk less techie
It's about business impact
Visual storytelling

Be consistent

TECH TALKS

IN-DEPTH SERIES

@ outsystems

is key!

$10,000

$1,000
Average
Cost to Fix
A Defect

$100

$10

Defect found
by customers * == === »
after deployment

Defect found via
acceptance testing

Defect found via
system integration . %
testing ™

Defect found via a
review or inspection ,
.

Defect found via
collaborative work

.
.

.
'
|4
Minutes Hours' Days Weeks Months
Length of Feedback Cycle
projectmanagement.com

38

Hotspot view

o 7 Osbbond Voo s evpnn | v w0 e rterd + @ T pauto Setumio

S nemwin (-----------------------
e =- L L1 o el ooyl —olf ol - |

e SRR R T R S T IR 2 I B Y S S AT B
SIEEE STTODEED S O EFITRE T EEEEEIm T

wrawn 5 |-------------------u - o |
_eeecen | SEHES T) S e e B S T e R S R e S 2 s
s | R) o R) S B e

Lot sy o ZO00L06 120008 UTEY

°outsystems TECH TALKS

IN-DEPTH SERIES

Combine tools to spice up the
outcomes

40

Social aspects

How hard is it to keep evolving when a developer leaves
the team?

°Outsyst TTTTTTTTTTTT 41
llllllll SERIES

outsystems

TECH TALKS

Social aspects

Team coordination
Diffusion of responsibility

Versioning system

42

| P

(a) One developer (b) Few balanced devel-
opers

(c) One major and many (d) Many balanced devel-
minor developers opers

Fractal Figures: Visualizing Development Effort for CVS Entities
M. D'Ambros, M. Lanza, H. Gall

Qoutsystems TECH TALKS

Monitoring dependencies

Fractal Figures - Development patterns

The more balanced the better

43

Check your temperature regularly

44

@ outsystems

Reckless

“We don’t have time

Prudent

“We must ship now

for design” and deal with
consequences”
Deliberate
Inadvertent
] , _— “Now we know how we
‘What's Layering? should have done it”

https://martinfowler.com/bliki/TechnicalDebtQuadrant.htmi

TECH TALKS

IN-DEPTH SERIES

And how to prioritize?

It's about: Indicators:
e Finding a balance e Interestrate
e Aim atvalue e Hotspot
e Business continuity e Change frequency

e Responsibility dispersion

e Early phases:

@ ° Architecture
° Maintainability
e C(Close to Go Live

° Security

Customers

° Performance

°outsystems TECH()TALKS

46

Have constant checkpoints with the team

Learning opportunities

°Outsyst TTTTTTTTTTTT 47
llllllll SERIES

Be opportunistic

|

Technical Debt perception by OutSystems teams

o Outsyst SSSSSSSSSSSS 49

References

° OutSystems’ Stop Tech Debt.com

° BMC's Technical Debt explained - The complete guide to understanding and dealing with Technical Debt

° Gartner’s www.gartner.com/en/documents/3989188/manage-technology-debt-to-create-technology-wealth

° On Ward Cunningham:

° en.wikipedia.org/wiki/Ward Cunningham

° www.youtube.com/watch?v=|p5japiHAs4&t=8s

° Martin Fowler’s Technical Debt Quadrant

° Uncle Bob’s A Mess is not a Technical Debt
° Technical Debt - What to do?

° Does you OutSystems code smell?

° A code style quide for OutSystems

° refactoring.guru

° Google Engineering Practices
° Communicating with Management about Technical Debt

° Fractal Figures: Visualizing Development Effort for CVS Entities

TECH TALKS

IN-DEPTH SERIES

@ outsystems

QRA

outsystems

TECH TALKS

51

(5]

NOVEMBER 17-18

OSDC 2021

Build real solutions and make real
connections, virtually.

50+ 150+

sessions countries

5+

tracks

outsystems.com/nextstep/OSDC

Why Attend

= 1%

Stay up to date Learn
Find out about the latest Whether you're starting out or
developments in the OutSystems leveling up, benefit from
platform hands-on expert led sessions
Connect Boost your career e
Join with other OutSystems developers See how to become an t —
around the world to collaborate, OutSystems expert and add new e

invent, and make new friends skills to your arsenal

