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What you’ll 
learn here
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Audience
Tech Leads

Developers

Architects

Engagement Managers

Product Owners / Managers

Project Managers
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Technical Debt
Is the coding you have to do now 
Because of the shortcuts you 
took yesterday
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Simply put



Carnegie Mellon University:
“the tradeoff between the short-term benefit of rapid delivery 
and long-term value.”

Gartner:
“the deviation of an application from any nonfunctional 
requirements.”
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Tech Debt is...



But, am I dealing with Tech Debt?

Changes that follow the remediation of Tech Debts are 

not supposed to affect the behaviour of the App, from 

a functional perspective
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A mess!
A mess is not a technical debt.
A mess is just a mess.

“Messy code, produced by people who 
are ignorant of good design practices, 
shouldn't be a debt.”
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Tech Debt is NOT...

Uncle Bob

Best-selling author on software design principles

Co-author of the Agile Manifesto



Lehman's laws of software evolution

Continuing Change

Continually adapt or it becomes progressively less satisfactory (1974)

Increasing Complexity

Complexity increases unless work is done to maintain or reduce it (1974)

Continuing Growth
Functional content must continually increase to maintain user satisfaction (1991)

Declining Quality

Quality will appear to be declining unless it is rigorously maintained and adapted (1996)
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Manny Lehman

Father of Software Evolution
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Impact in Businesses



Root Causes

Neil Ernst in 2015, at Carnegie Mellon University, A Field Study of Technical Debt



Financial Debt -> Technical Debt
A Metaphor

“We accumulate the learnings about the application over time by 

modifying the program to look as if we had known what we were 

doing all along.” - Ward Cunningham

“I am never in the favor of writing code poorly, but I am in favor 

of writing code to reflect your current understanding of a 

problem.” - Ward Cunningham

“A particular benefit of the debt metaphor is that it's very handy 

for communicating to non-technical people.” - Martin Fowler
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Ward Cunningham

First wiki

Co-author of the Agile Manifesto



The cost of avoidance

15

Like monetary debt, technical debt can 
accumulate “interest”.

The longer technical debt is ignored or 
unaddressed, the more software entropy can 
occur.



A model to Master 
Tech Debt
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#1: Don’t let it build up
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#1: Don’t let it build up

#2: Make informed decisions driven by value to the business
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#1: Don’t let it build up

#2: Make informed decisions driven by value to the business

#3: Bring the client / owner to the party
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It’s about finding 
the balance
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Preventing
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Leverage good practices
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Challenge assumptions

But help find the balance
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Avoid over engineered features

The more code the more Tech Debt
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Bulletproof NFRs

Everchanging integrations tend to demand 
refactoring in several layers

26



Identifying
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Code smell
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Code smells in OutSystems
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Easy to spot:
● Hardcoding

● Monolithic logic

● Duplicated code

● Cyclic references

● Incorrect dependencies

● Client x Server logic mixed up

● Undocumented components

In-Depth:
● Violation to domain rules

● Inconsistent data modeling

● Change frequency

● Cyclomatic complexity
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OutSystems Discovery
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Coding 
Style
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Coding 
Style



Code Reviews
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https://google.github.io/eng-practices/review/reviewer/

Outer vision

Mentoring

Consensus

Shared ownership
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OutSystems Architecture Dashboard

https://success.outsystems.com/Documentation/11/Managing_the_Applications_Lifecycle/Manage_technical_debt/Code_Analysis_Patterns



Managing
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Bring the client to the party

Help them visualize it
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Communication is key!
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projectmanagement.com

Talk less techie

It’s about business impact

Visual storytelling

Be consistent
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Hotspot view



Combine tools to spice up the 
outcomes
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Social aspects

How hard is it to keep evolving when a developer leaves 
the team?
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Social aspects

Team coordination

Diffusion of responsibility

Versioning system
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Monitoring dependencies

Fractal Figures - Development patterns

The more balanced the better

Fractal Figures: Visualizing Development Effort for CVS Entities
M. D'Ambros, M. Lanza, H. Gall



Check your temperature regularly
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https://martinfowler.com/bliki/TechnicalDebtQuadrant.html



It’s about:

● Finding a balance

● Aim at value

● Business continuity

And how to prioritize?
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Indicators:

● Interest rate

● Hotspot

● Change frequency

● Responsibility dispersion

● Early phases:
● Architecture

● Maintainability

● Close to Go Live
● Security

● PerformanceCustomers



Have constant checkpoints with the team

Learning opportunities
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Be opportunistic
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Technical Debt perception by OutSystems teams
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● OutSystems’ Stop Tech Debt.com

● BMC’s Technical Debt explained - The complete guide to understanding and dealing with Technical Debt

● Gartner’s www.gartner.com/en/documents/3989188/manage-technology-debt-to-create-technology-wealth

● On Ward Cunningham:

● en.wikipedia.org/wiki/Ward_Cunningham

● www.youtube.com/watch?v=Jp5japiHAs4&t=8s

● Martin Fowler’s Technical Debt Quadrant

● Uncle Bob’s A Mess is not a Technical Debt

● Technical Debt - What to do?

● Does you OutSystems code smell?

● A code style guide for OutSystems

● refactoring.guru

● Google Engineering Practices

● Communicating with Management about Technical Debt

● Fractal Figures: Visualizing Development Effort for CVS Entities

References
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Q&A
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outsystems.com/nextstep/OSDC



Why Attend


