
Tech Debt
How to Diagnose and Manage Technical Debt



Joao Melo
MVP & Principal Tech Lead @ PhoenixDX

2





What you’ll 
learn here

4

1. What it is...

2. Impact in Businesses

3. Root Causes

4. Model to Master Tech Debt

5. Q&A



Audience
Tech Leads

Developers

Architects

Engagement Managers

Product Owners / Managers

Project Managers

5



Technical Debt
Is the coding you have to do now 
Because of the shortcuts you 
took yesterday

6

Simply put



Carnegie Mellon University:
“the tradeoff between the short-term benefit of rapid delivery 
and long-term value.”

Gartner:
“the deviation of an application from any nonfunctional 
requirements.”

7

Tech Debt is...



But, am I dealing with Tech Debt?

Changes that follow the remediation of Tech Debts are 

not supposed to affect the behaviour of the App, from 

a functional perspective

8



A mess!
A mess is not a technical debt.
A mess is just a mess.

“Messy code, produced by people who 
are ignorant of good design practices, 
shouldn't be a debt.”

9

Tech Debt is NOT...

Uncle Bob

Best-selling author on software design principles

Co-author of the Agile Manifesto



Lehman's laws of software evolution

Continuing Change

Continually adapt or it becomes progressively less satisfactory (1974)

Increasing Complexity

Complexity increases unless work is done to maintain or reduce it (1974)

Continuing Growth
Functional content must continually increase to maintain user satisfaction (1991)

Declining Quality

Quality will appear to be declining unless it is rigorously maintained and adapted (1996)

10
Manny Lehman

Father of Software Evolution



11

Continuing 

Change

Increasing 

Complexity

Continuing 

Growth

Declining 

Quality

User 

Satisfaction



Impact in Businesses



Root Causes

Neil Ernst in 2015, at Carnegie Mellon University, A Field Study of Technical Debt



Financial Debt -> Technical Debt
A Metaphor

“We accumulate the learnings about the application over time by 

modifying the program to look as if we had known what we were 

doing all along.” - Ward Cunningham

“I am never in the favor of writing code poorly, but I am in favor 

of writing code to reflect your current understanding of a 

problem.” - Ward Cunningham

“A particular benefit of the debt metaphor is that it's very handy 

for communicating to non-technical people.” - Martin Fowler

14

Ward Cunningham

First wiki

Co-author of the Agile Manifesto



The cost of avoidance

15

Like monetary debt, technical debt can 
accumulate “interest”.

The longer technical debt is ignored or 
unaddressed, the more software entropy can 
occur.



A model to Master 
Tech Debt

16



#1: Don’t let it build up

17



#1: Don’t let it build up

#2: Make informed decisions driven by value to the business

18



#1: Don’t let it build up

#2: Make informed decisions driven by value to the business

#3: Bring the client / owner to the party

19



It’s about finding 
the balance

20



Preventing

21



Leverage good practices

22



23



Challenge assumptions

But help find the balance

24



Avoid over engineered features

The more code the more Tech Debt

25



Bulletproof NFRs

Everchanging integrations tend to demand 
refactoring in several layers

26



Identifying

27



Code smell

28



Code smells in OutSystems

29

Easy to spot:
● Hardcoding

● Monolithic logic

● Duplicated code

● Cyclic references

● Incorrect dependencies

● Client x Server logic mixed up

● Undocumented components

In-Depth:
● Violation to domain rules

● Inconsistent data modeling

● Change frequency

● Cyclomatic complexity



30

OutSystems Discovery



31



32

Coding 
Style



33

Coding 
Style



Code Reviews

34

https://google.github.io/eng-practices/review/reviewer/

Outer vision

Mentoring

Consensus

Shared ownership



35

OutSystems Architecture Dashboard

https://success.outsystems.com/Documentation/11/Managing_the_Applications_Lifecycle/Manage_technical_debt/Code_Analysis_Patterns



Managing

36



Bring the client to the party

Help them visualize it

37



Communication is key!

38

projectmanagement.com

Talk less techie

It’s about business impact

Visual storytelling

Be consistent



39

Hotspot view



Combine tools to spice up the 
outcomes

40



Social aspects

How hard is it to keep evolving when a developer leaves 
the team?

41



42

Social aspects

Team coordination

Diffusion of responsibility

Versioning system



43

Monitoring dependencies

Fractal Figures - Development patterns

The more balanced the better

Fractal Figures: Visualizing Development Effort for CVS Entities
M. D'Ambros, M. Lanza, H. Gall



Check your temperature regularly

44



45

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html



It’s about:

● Finding a balance

● Aim at value

● Business continuity

And how to prioritize?

46

Indicators:

● Interest rate

● Hotspot

● Change frequency

● Responsibility dispersion

● Early phases:
● Architecture

● Maintainability

● Close to Go Live
● Security

● PerformanceCustomers



Have constant checkpoints with the team

Learning opportunities

47



Be opportunistic

48



Technical Debt perception by OutSystems teams

49



● OutSystems’ Stop Tech Debt.com

● BMC’s Technical Debt explained - The complete guide to understanding and dealing with Technical Debt

● Gartner’s www.gartner.com/en/documents/3989188/manage-technology-debt-to-create-technology-wealth

● On Ward Cunningham:

● en.wikipedia.org/wiki/Ward_Cunningham

● www.youtube.com/watch?v=Jp5japiHAs4&t=8s

● Martin Fowler’s Technical Debt Quadrant

● Uncle Bob’s A Mess is not a Technical Debt

● Technical Debt - What to do?

● Does you OutSystems code smell?

● A code style guide for OutSystems

● refactoring.guru

● Google Engineering Practices

● Communicating with Management about Technical Debt

● Fractal Figures: Visualizing Development Effort for CVS Entities

References

50



Q&A

51



outsystems.com/nextstep/OSDC



Why Attend


